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Spectral Reconstruction mathematical model: 

This section describes how we acquire mathematical model of the computational spectrometer. After 

the incident light passes through the spatially distributed filters, intensity is modified to varying degrees 

at different wavelengths, and the resulting signals are captured by the camera. This process can be 

described mathematically as: 

∫ 𝐹(𝜆)𝑅𝑖(𝜆)𝑑𝜆 = 𝐼𝑖  (𝑖 = 1,2,3, … 𝑛) 
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

(𝑆1) 

where Ii is the signal obtained at the pixel of the image sensor under the microfilter, i is the serial number 

of the microfilter, and Ri() generally represents the response spectrum of the pixel, which is obtained in 

the pre-calibration process and equals the product of transmittance of the QD microfilter and the inherent 

response spectrum of the image sensor. F() is the spectrum of the incident light to be reconstructed.  

Before operating the spectrometer, one needs to take measurements to obtain the Ri(), a process 

often referred to as the learning process, also known as the pre-calibration (or initialization) process. In 

the pre-calibration process, a spatially uniform monochromatic light is input and the corresponding signal 

of the pixel under each microfilter is collected. The wavelength of the monochromatic light is scanned 

at a given interval in the operating wavelength range to produce the Ri(). 

Considering that the output of a monochromator conforms to the Gaussian distribution,[45-46] a given 

spectrum can be decomposed based on the Gaussian basis. Therefore, we carried out the Gaussian basis-

based decomposition of F(λ): 

𝐹(𝜆) ≈ ∑ 𝜙𝑗(𝜆)𝑥𝑗

𝑚

𝑗=1

(𝑆2) 

where 𝜙𝑗(𝜆) =  
1

𝜎√2𝜋
exp [−

1

2
(

𝜆−𝜆𝑗̂

𝜎
)

2

], the parameter  is defined as 𝜎 = (2√𝑙𝑛2)
−1

𝛿𝑑, where 𝛿𝑑 is 

half of the full width at half maximum (FWHM) of the actual monochromatic light. Here,𝜆𝑗̂denotes the 

central wavelength of the monochromatic light for the jth scan, and j represents the number of 

monochromatic lights involved in the scanning process, the scan resolution in short. At this point, the Eq. 

(S1) is rewritten as:  

∑ (∫ 𝑅𝑖(𝜆)𝜙𝑗(𝜆)𝑑𝜆
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

)   𝑥𝑗 =

𝑚

𝑗=1

𝐼𝑖(𝑖 = 1,2,3, … 𝑛) (𝑆3) 

We set 𝐴𝑖𝑗 = ∫ 𝑅𝑖(𝜆)𝜙𝑗(𝜆)𝑑𝜆
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
, and discretize the integration process, then the mathematical model 



can be solved as the following matrix equation: 

𝐴𝑥 = 𝐼 (𝑆4) 

At this point, the variable x to be solved is not the spectrum of the light to be measured, but the 

Gaussian base coefficient of the incident light. Due to the underdetermined character of the matrix A, it 

is not possible to obtain x by direct computation based on the inverse matrix. Therefore, as mentioned in 

the compressive sensing theory,[47-48] the solution of this problem is usually transformed into an 

optimization problem: 

𝑚𝑖𝑛
𝑥

 ‖𝐴𝑥 −  𝐼‖𝐿𝑝

𝐴𝑥 = 𝐼
(𝑆5) 

where Lp denotes the norm of the problem. Since the L1 norm would constitute an NP-hard problem, the 

L2 norm is normally used to formulate this problem. 

 

Spectral Reconstruction Algorithm: 

A number of works have chosen to use Tikhonov regularization, also known as the Ridge regression 

algorithm, to solve this problem, and the resulting mathematical model becomes： 

𝑚𝑖𝑛
𝑥

 𝐿 =  ‖𝐴𝑥 − 𝐼‖2 + 𝛾2‖𝑥‖2 (𝑆6) 

here, 𝛾 is the coefficient of the regular term and the pseudo-code for this algorithm is shown below: 

Algorithm 1: Ridge regression 

Input: 𝐴, 𝐼, 𝛾; 

Output:𝑥;  

  1. 𝑥 = 𝐴𝑇𝐼; 

  2. 𝛾 = min
𝛾

‖𝐴𝑥−𝐼‖2
2

[𝑛−𝑡𝑟𝑎𝑐𝑒(𝐴(𝐴𝐴𝑇+γ2)
−1

𝐴𝑇)]
2 ; 

  3. 𝑥 = (𝐴𝑇𝐴 + 2𝛾2)−1(𝐴𝑇𝐼); 

  4. return 𝑥; 

We next add the TV regularization technique with AdaDelta iteration compared to the Ridge 

regression algorithm, which achieves a better broad spectrum response. Its mathematical model is: 

min
𝑥

 𝐿 =  ‖𝐴𝑥 − 𝐼‖2 + 𝛾2‖𝑥‖2 +
𝜌

2
‖𝐺𝑥‖2 (𝑆7) 

where 𝛾  and 𝜌  are the coefficients of the corresponding regular terms, and 𝐺  is the gradient 

computation matrix. The implementation details of Ridge+TV are shown in the pseudo-code below: 

Algorithm 2: Ridge+TV 

Input: 𝐴, 𝐼, 𝛾, ρ, 𝜀, 𝐺; 

Output: 𝑥;  

1. 𝑥 = 𝐴𝑇𝐼; 

2. 𝒘𝒉𝒊𝒍𝒆: 𝐺𝑥 ≥ 𝜀; 

3. ∆𝛾𝑡 = −
𝜂

√𝐸[𝛾2]𝑡+𝜀
𝛾𝑡 ; 

4. 𝛾=∆𝛾𝑡+𝛾; 

5. 𝑥 = (𝐴𝑇𝐴 + 𝜌𝐺𝑇𝐺 + 2𝛾2)−1(𝐴𝑇𝐼); 

6. return 𝑥; 



Subsequently, we further introduced ADMM to strengthen the control of the two canonical terms to 

achieve stronger anti-noise effect, and the obtained mathematical model is as follows： 

min
𝑥

 𝐿 = 𝛾2‖𝑥‖2 + 𝜆‖𝑦‖ +
𝛽
2

‖𝑧 − 𝐴𝑥 + 𝐼 +
𝑎
𝛽

‖ +
𝛼
2

‖𝑦 − 𝐺𝑥 +
𝑏
𝛼

‖

𝑠. 𝑡.   𝑧 = 𝐴𝑥 − 𝐼;  𝑦 = 𝐺𝑥;   𝐴𝑥 = 𝐼;
(𝑆8) 

The pseudo-code for this algorithm is: 

Algorithm 3: TKVA 

Input: 𝐴, 𝐼, 𝛾, 𝜀, 𝐺, 𝑎, 𝛼, 𝑏, 𝛽, 𝜆; 

Output: 𝑥;  

  1.𝑥 = 𝐴𝑇𝐼; 

  2. 𝒘𝒉𝒊𝒍𝒆: 𝑦 ≥ 𝜀 

  3. Update variables: 

  4. . 𝑥 = (2γ2𝐼 + β𝐴𝑇𝐴 + α𝐺𝑇𝐺)−1 (β𝐴𝑇 (𝑧 + 𝑏 +
𝑎

β
) + α𝐺𝑇 (𝑦 +

𝑏

α
)) ; 

  5. 𝑦 = max (|𝑣2| −
𝜆

𝛼
, 0) 𝑠𝑖𝑔𝑛(𝑣2) , 𝑣2 = 𝐺𝑥 −

𝑏

𝛼
; 

  6. 𝑧 = max(|𝑣1|, 0) 𝑠𝑖𝑔𝑛(𝑣1)  , 𝑣1 = 𝐴𝑥 − 𝐼 −
𝑎

𝛽
; 

  7. Update parameters: 

  8. 𝑎 = 𝑎 + 𝛽(𝑧 − 𝐴𝑥 + 𝐼); 

  9. 𝑏 = 𝑏 + 𝛼(𝑦 − 𝐺𝑥); 

 10. 𝛼 = 𝜆𝛼; 

 11. 𝛽 = 𝜆𝛽; 

 12. ∆𝛾𝑡 = −
𝜂

√𝐸[𝛾2]𝑡+𝜀
𝛾𝑡 ; 

 13. 𝛾 = ∆𝛾𝑡+𝛾; 

 14. return 𝑥; 

 

 

 

 



 
Fig. S1 Absorption spectra of all QDs used in this work. 

 

Fig. S2 Typical transmission electron microscope images of the four types of quantum dots: (a) CdS, (b) 

CdSxSe1-x, (c) CdSe, (d) CdTe. 
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Fig. S3 Change of QD PL spectrum before and after introducing a fluorescence quencher. 

 

 
Fig. S4 Dispersion solutions of QDs after ligand exchange in different solvents and polymers systems. 

Two common polymers were selected: polyvinylpyrrolidone (PVP) and cellulose acetate (CA), along with 

three solvents: dimethyl sulfoxide (DMSO), dimethylformamide (DMF), and γ-butyrolactone (GBL). QD 

inks with equal concentrations were prepared and coated. (a) and (b) demonstrate good dispersion and 

stability of these QD inks. (c) shows the dispersion of QDs after film formation with the corresponding 

inks. 
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Fig. S5 a) Reconstruction results of monochromatic light using the Ridge+TV and Ridge regression 

algorithms. b) Recovery effect of Ridge+TV and Ridge regression algorithms for a white LED spectrum. 

 

 

Fig. S6. Spectral reconstruction results of TKVA and ALM algorithms at noise level of: a) 10 dB, b) 0 dB, 

c) -3 dB. 

 



 
Fig. S7 Reconstruction results of the ALM algorithm at different interpolation factors. 

 

 
Fig. S8 Reconstruction results of TKVA algorithm with 15x interpolation for initialization data scanned 

every 3 nm and 5x interpolation scanned every 1 nm. 

 

 
Fig. S9 Simulation results for spectral resolution according to the Rayleigh criterion. a) Two beams of 

monochromatic light separated by 2 nm, b) Two beams of monochromatic light separated by 1.6 nm. 

               

               

   

   

   

   

   

   

  
  
 
 
  
 
  
 
  
  

            

           

        



 

 

Fig. S10 The electrohydrodynamic jet printing equipment and its operating interface. 

 

 

 

 


